Info: Das Werbefenster erscheint nur für unregistrierte User und auch nur einmal pro IP alle 90 Minuten
Ascona-Board - Das Forum rund um den Ascona A,B,C
Board-Menü
 Portal
 Forum

 FAQ / Hilfe
 Team
 Suche



 Registrieren
 Einloggen
Usermenü
Zum Lexikon (17)

Newsletter bestellen

 Chat
Usermenü 2
 eBay-Portal
 Top100
Guthaben-Optionen
Forentreffen
 Treffen 2004
 Treffen 2005
 Treffen 2006
 Treffen 2007
 Treffen 2008
Partner

Spenden

all-inkl.com webhosting
Ascona-Board - Das Forum rund um den Ascona A,B,C» Hier betriffts das Forum selber» Chat-Area » New Algorithm Boosts Efficiency of Lidar-Based Delivery Robots » Hallo Gast [Anmelden|Registrieren]
Letzter Beitrag | Erster ungelesener Beitrag Druckvorschau
Zum Ende der Seite springen New Algorithm Boosts Efficiency of Lidar-Based Delivery Robots  
Autor
Beitrag « Vorheriges Thema | Nächstes Thema »
johnrennceo
Grünschnabel



Dabei seit: 06.05.2025
Zuletzt online: Gestern
Beiträge: 2 Beiträge von johnrennceo suchen

Tankinhalt: 70 Liter



Level: 1 Was bedeutet diese Anzeige ?
Erfahrungspunkte: 1
Nächster Level: 10

9 Erfahrungspunkt(e) für den nächsten Levelanstieg


New Algorithm Boosts Efficiency of Lidar-Based Delivery Robots  Markiere einen Text im Beitrag und klicke dann hier, um den markierten Text bei google zu suchen Zum Anfang der Seite springen

Autonomous delivery robots from companies like Starship Technologies and Kiwibot are increasingly navigating city streets and neighborhoods. These robots rely on a combination of sensors and software to understand and move through their environments.

A key technology in their navigation systems is lidar, which uses light pulses to measure distances and create detailed maps of surroundings through a process called simultaneous localization and mapping, or SLAM. While effective, this approach consumes significant memory and computing power, limiting how far and efficiently robots can operate.

"Over time, these systems can accumulate 10 to 20 gigabytes of data," says Zihao Dong, a doctoral student at Northeastern University. "Managing that much information becomes a heavy computational burden."

To overcome these challenges, Dong has developed a new 3D mapping technique that significantly reduces the computational load required for robotic navigation. Working under the guidance of Professor Michael Everett from Northeastern's Department of Electrical and Computer Engineering, Dong introduced a method that cuts memory use by up to 57 percent compared to leading alternatives. Their findings are published on the arXiv preprint server.

The algorithm, called Deep Feature Assisted Lidar Inertial Odometry and Mapping (DFLIOM), builds on an existing method known as Direct LiDAR Inertial Odometry and Mapping (DLIOM). Both rely on lidar sensors and inertial measurement units to construct 3D maps, but DFLIOM enhances the process by using a more efficient way of interpreting environmental data. In some cases, it even improves mapping accuracy.

 https://github.com/BrianTMN/Rainbow-Six-...unlimited-money
 https://github.com/JasonBTD/Temple-Run-2...ns-and-gems-MOD
 https://github.com/KevinBMT/50-Tiny-Room...s-and-coins-MOD
 https://github.com/DavidFNT/Grand-Gangst...mited-money-MOD
 https://github.com/AndrewGNT/Happy-Diner...ey-and-gems-MOD
 https://github.com/StephenGNA/Realms-of-...ited-everything
 https://github.com/EricBNT/Run-Goddess-M...-money-and-gems
 https://github.com/AlexanderPGN/State-Co...ey-and-gems-MOD
 https://github.com/KyleNBO/Spider-Fighte...mited-money-MOD
 https://github.com/ScottBND/Flex-City-un...ey-and-gold-MOD
 https://github.com/TravisMBR/Agent-Hunt-unlimited-money-MOD
 https://github.com/ShaneGNC/War-Machines...nd-diamonds-MOD
 https://github.com/TimothyKBT/Standoff-2-unlimited-gold-MOD
 https://github.com/ChrisBNC/Zombie-Apoca...ey-and-gold-MOD
 https://github.com/GregTNB/Critical-Stri...mited-money-MOD
 https://github.com/JoelKNV/Space-Survivo...ey-and-gems-MOD
 https://github.com/TroyMBC/World-War-Her...imited-gold-MOD
 https://github.com/DennisKMB/Once-Human-...imited-Crystgin
 https://github.com/DevonMNB/Suzy-s-Resta...mited-money-MOD
 https://github.com/DustinBRM/FPS-Strike-...mited-money-MOD
 https://github.com/KevinHSN/Grunt-Rush-B...-money-and-gems
 https://github.com/DaveALG/Top-Heroes-Ki...ited-everything
 https://github.com/jasonRBL/Archers-Onli...ey-and-gems-MOD

"This research pushes back against the assumption that more data automatically means better performance," says Everett. "Sensor companies often promote devices that deliver increasingly dense data, but more data can actually make it harder for algorithms to keep up."

Dong and Everett's work focuses on designing smarter algorithms that extract only the most essential information, allowing robots to map their environments more efficiently without compromising performance.

The new approach was tested using Northeastern’s Agile X Scout Mini robot, equipped with an autonomy kit including an Ouster lidar, battery pack, and Intel NUC mini PC. The robot successfully created 3D maps of several campus locations, including Centennial Common, Egan Crossing, and Shillman Hall.

This advancement could lead to more capable, longer-lasting delivery robots that can operate effectively without overwhelming their onboard systems—an important step forward in the quest for scalable urban automation.
0 Gestern, 22:36 johnrennceo ist offline

Baumstruktur | Brettstruktur
Gehe zu:

Ähnliche Themen
Thread Forum Letzte Antwort
Belial Returns: Nostalgia Meets New Content [...] Lob und Tadel   21.04.2025 05:24 von tomas  
Unveiling the New Bosses of Diablo 4’s Season 8 Was ich mal sagen wollte.....   09.04.2025 04:12 von tomas  
Rogue: A New Era with Vulnerability Tach zusammen....   08.04.2025 09:23 von tomas  
Overhauling Diablo 4's Battle Pass: A New Er [...] Lob und Tadel   04.04.2025 08:34 von tomas  
U4GM - The First Copper Coins of the New World Lob und Tadel   27.03.2025 09:00 von SwerveMirth  


Powered by Burning Board © 2001-2004 WoltLab GmbH
Besucher seit 04.04.2003 gesamt: 12.784.958 | Besucher heute: 3018 | Besucher gestern: 10.969
Board protected by CTracker Sitemap RSS-Feed
.: Impressum :. || .: Link Us :. || .: Sitemap :.